Visualization#
- class src.visualization.VisualizationManager.VisualizationManager(fontsize: int = 15, figsize_signal: tuple = (16, 10), figsize_snn: tuple = (20, 20), nb_xticklabels: int = 10, nb_yticklabels: int = 8)#
Bases:
object
Class that handles data visualization.
- plot_ann_layers(out_rec: List[array], out: Tensor, x_data: Tensor, y_data: Tensor, model_name: str, plot_hidden: bool = True, z_max: int | None = 64, plot_title: str = 'output', imshow: bool = True, data_idx: int = 0, experiment: Experiment | None = None, epoch: int | None = None, show_flag: bool = False) None #
Method that plots output of SNN layers.
- Parameters:
out_rec (List[np.array]) -- List of output of ANN layers.
out (torch.Tensor) -- ANN output.
x_data (torch.Tensor) -- ANN input.
y_data (torch.Tensor) -- ANN target output.
model_name (str) -- ANN model name.
plot_hidden (bool) -- Boolean that indicates weather to plot output of hidden layers.
z_max (Optional[int]) -- Maximum number of channels if input has 3 dimensions.
plot_title (str) -- Plot title.
imshow (bool) -- Boolean that indicates weather to use imshow function.
data_idx (int) -- Data index.
experiment (Optional[Experiment]) -- Comet ML experiment instance.
epoch (int) -- Training iteration.
show_flag (bool) -- Boolean that indicates weather to show figure.
- plot_coefficients(coefficients: ndarray, signal_type: str | None = None, spec_cmap: str = 'turbo', plot_title: str = 'coefficients', show_flag: bool = True, fig_dir: str | None = None, fig_format: str = 'jpg') None #
Method that plots the activation.
- Parameters:
coefficients (np.ndarray) -- A numpy array of coefficients.
signal_type (str) -- Signal type.
spec_cmap (str) -- Colormap.
plot_title (str) -- Plot title.
show_flag (bool) -- Boolean that indicates weather to show figure.
fig_dir (Optional[str]) -- Path to save figure.
fig_format (str) -- Format for figure saving.
- plot_dist(coefficients: Tensor, experiment: Experiment | None = None, signal_type: str | None = None, bins: int = 50, kde: bool = False, log_scale: bool = False, plot_title: str = 'distribution', show_flag: bool = True, fig_dir: str | None = None, fig_format: str = 'jpg') None #
Method that plots data distribution.
- Parameters:
coefficients (torch.Tensor) -- A numpy array of coefficients.
experiment (Optional[Experiment]) -- Comet ML experiment instance.
signal_type (str) -- Signal type.
bins (int) -- Number of bins.
kde (bool) -- Boolean that indicates weather to compute a kernel density estimate.
log_scale (bool) -- Boolean that indicates weather to set axis scale(s) to log.
plot_title (str) -- Plot title.
show_flag (bool) -- Boolean that indicates weather to show figure.
fig_dir (Optional[str]) -- Path to save figure.
fig_format (str) -- Format for figure saving.
- plot_loss(training_loss_hist: List[float], validation_loss_hist: List[float] | None = None, plot_title: str = 'Loss per epoch', show_flag: bool = True, fig_dir: str | None = None, fig_format: str = 'jpg') None #
Method that plots the loss history.
- Parameters:
training_loss_hist (List[float]) -- Training loss history list.
validation_loss_hist (List[float]) -- Validation loss history list.
plot_title (str) -- Plot title.
show_flag (bool) -- Boolean that indicates weather to show figure.
fig_dir (Optional[str]) -- Path to save figure.
fig_format (str) -- Format for figure saving.
- plot_membrane_potential(membrane_potential_records: ndarray, imshow: bool = True, z_max: int | None = 32, channel_idx: bool = False, collated: bool = False, n_channels: int = 5, experiment: Experiment | None = None, epoch: int | None = None, signal_type: str | None = None, cmap: str = 'turbo', plot_title: str = 'Membrane potential', show_flag: bool = True, fig_dir: str | None = None, fig_format: str = 'jpg') None #
Method that plots the membrane potential records.
- Parameters:
membrane_potential_records (np.ndarray) -- Membrane potential records.
imshow (bool) -- Boolean that indicates weather to use imshow function.
z_max (Optional[int]) -- Maximum number of channels if input has 3 dimensions.
channel_idx (bool) -- Boolean that indicates weather to show channel index.
collated (bool) -- Boolean that indicates weather to collate multiple figures.
n_channels (int) -- Number of channels within plot.
experiment (Optional[Experiment]) -- Comet ML experiment instance.
epoch (int) -- Training iteration.
signal_type (str) -- Signal type.
cmap (str) -- Colormap.
plot_title (str) -- Plot title.
show_flag (bool) -- Boolean that indicates weather to show figure.
fig_dir (Optional[str]) -- Path to save figure.
fig_format (str) -- Format for figure saving.
- plot_perceptual_metric(training_perceptual_metric_hist: List[float], validation_perceptual_metric_hist: List[float] | None = None, show_flag: bool = True, fig_dir: str | None = None, fig_format: str = 'jpg') None #
Method that plots a perceptual metric history.
- Parameters:
training_perceptual_metric_hist (List[float]) -- Training perceptual metric history list.
validation_perceptual_metric_hist (List[float]) -- Validation perceptual metric history list.
show_flag (bool) -- Boolean that indicates weather to show figure.
fig_dir (Optional[str]) -- Path to save figure.
fig_format (str) -- Format for figure saving.
- plot_raster(spikes, scatter_plot: bool = False, z_max: int | None = 64, channel_idx: bool = False, collated: bool = False, experiment: Experiment | None = None, epoch: int | None = None, signal_type: str | None = None, plot_title: str = 'Raster plot', show_flag: bool = True, fig_dir: str | None = None, fig_format: str = 'jpg') None #
Method that plots the raster plot.
- Parameters:
spikes (np.ndarray) -- Spike trains.
scatter_plot (bool) -- Boolean that indicates weather to use scatter function.
z_max (Optional[int]) -- Maximum number of channels if input has 3 dimensions.
channel_idx (bool) -- Boolean that indicates weather to show channel index.
collated (bool) -- Boolean that indicates weather to collate multiple figures.
experiment (Optional[Experiment]) -- Comet ML experiment instance.
epoch (int) -- Training iteration.
signal_type (str) -- Signal type.
plot_title (str) -- Plot title.
show_flag (bool) -- Boolean that indicates weather to show figure.
fig_dir (Optional[str]) -- Path to save figure.
fig_format (str) -- Format for figure saving.
- plot_signal(signal: ndarray | List[ndarray], signal_name: str, sample_rate: int, signal_label: List[str] = [], alpha: float = 0.5, show_flag: bool = True, fig_dir: str | None = None, fig_format: str = 'jpg') None #
Method that plots the audio signal.
- Parameters:
signal (np.ndarray) -- A numpy array of audio signal.
signal_name (str) -- Audio signal name.
sample_rate (int) -- Sampling rate.
signal_label (List[str]) -- Signal label.
alpha (float) -- Sacalar value to adjust the transparency.
show_flag (bool) -- Boolean that indicates weather to show figure.
fig_dir (Optional[str]) -- Path to save figure.
fig_format (str) -- Format for figure saving.
- plot_signal_data(audio_dir: str | Path, index: int, plots_dir: str | Path, representation_name: str, coefficients: ndarray, signal_type: str, experiment: Experiment | None = None, scatter_plot: bool = False, plot_coefficients: bool = True, show_flag: bool = False, example_fig_format: str = 'jpg', verbose: bool = False) None #
Method that plots signal data: audio waveform and data representation.
- Parameters:
audio_dir (Union[str, Path]) -- Directory of the audio dataset.
index (int) -- Signal index.
plots_dir (Union[str, Path]) -- Plots directory.
representation_name (str) -- Representation name.
coefficients (np.ndarray) -- Representation coefficients.
signal_type (str) -- Signal type.
experiment (Optional[Experiment]) -- Comet ML experiment instance.
scatter_plot (bool) -- Boolean that indicates weather to use scatter function.
plot_coefficients (bool) -- Boolean that indicates weather to plot representation coefficients.
show_flag (bool) -- Boolean that indicates weather to show figure.
example_fig_format (str) -- Format for figure saving.
verbose (bool) -- Boolean that indicates weather to print specific output.
- plot_snn_layers(spk_rec: List[array], mem_rec: List[array], mem: Tensor, x_data: Tensor, y_data: Tensor, output: List[Tensor], plot_hidden: bool = True, z_max: int | None = 16, scatter_plot: bool = False, imshow: bool = True, data_idx: int = 0, experiment: Experiment | None = None, epoch: int | None = None, show_flag: bool = False) None #
Method that plots output of SNN layers.
- Parameters:
spk_rec (List[np.array]) -- List of spike trains of SNN layers.
mem_rec (List[np.array]) -- List of membrane potential of SNN layers.
mem (torch.Tensor) -- SNN output.
x_data (torch.Tensor) -- SNN input.
y_data (torch.Tensor) -- SNN target output.
output (List[torch.Tensor]) -- SNN intermediate output if use_intermediate_output parameter is True.
plot_hidden (bool) -- Boolean that indicates weather to plot output of hidden layers.
z_max (Optional[int]) -- Maximum number of channels if input has 3 dimensions.
scatter_plot (bool) -- Boolean that indicates weather to use scatter function.
imshow (bool) -- Boolean that indicates weather to use imshow function.
data_idx (int) -- Data index.
experiment (Optional[Experiment]) -- Comet ML experiment instance.
epoch (int) -- Training iteration.
show_flag (bool) -- Boolean that indicates weather to show figure.
- plot_spectrogram(coefficients: ndarray, transform_name: str | None = 'log_power', z_max: int | None = 64, channel_idx: bool = False, collated: bool = False, experiment: Experiment | None = None, epoch: int | None = None, signal_type: str | None = None, epsilon: float = 1e-08, cmap: str = 'turbo', vmax: float | None = None, vmin: float | None = None, plot_title: str = 'Spectrogram (dB)', show_flag: bool = True, fig_dir: str | None = None, fig_format: str = 'jpg') None #
Method that plots the STFT magnitude.
- Parameters:
coefficients (np.ndarray) -- A numpy array of STFT magnitude coefficients.
transform_name (Optional[str]) -- Transform function name.
z_max (Optional[int]) -- Maximum number of channels if input has 3 dimensions.
channel_idx (int) -- Boolean that indicates weather to show channel index.
collated (bool) -- Boolean that indicates weather to collate multiple figures.
experiment (Optional[Experiment]) -- Comet ML experiment instance.
epoch (int) -- Training iteration.
signal_type (str) -- Signal type.
epsilon (float) -- A small value to avoid computation error.
cmap (str) -- Colormap.
vmax (Optional[float]) -- Maximum value of figure data range.
vmin (Optional[float]) -- Minimum value of figure data range.
plot_title (str) -- Plot title.
show_flag (bool) -- Boolean that indicates weather to show figure.
fig_dir (Optional[str]) -- Path to save figure.
fig_format (str) -- Format for figure saving.