Fully Connected block class#
Fully Connected Spiking block class#
- class src.model.SpikingBlock.SpikingFCBlock(input_dim: int, output_dim: int, nb_steps: int, truncated_bptt_ratio: int, spike_fn: SuperSpike | SigmoidDerivative | PiecewiseLinear | ATan, neuron_model: str, neuron_parameters: dict, weight_init: dict, scale_flag: bool, scale_factor: float, bn_flag: bool, dropout_flag: bool, dropout_p: float, device, dtype: dtype, layer_index: int)#
Bases:
Module
Class that implements the SNN spiking linear block.
- forward(x: Tensor)#
Method that defines the performed computation during the forward pass.
Note
Note that this method override the super class method.
- Parameters:
x (torch.Tensor) -- A tensor of input data.
- init_neuron_parameters(neuron_parameters: dict)#
Method that handles the spiking neurons parameters' initialization.
- Parameters:
neuron_parameters (dict) -- Initialization specifications' dictionary.
- init_recurrent_weights(weight_init: dict)#
Method that handles the recurrent parameters' initialization.
- Parameters:
weight_init (dict) -- Initialization specifications' dictionary.
- init_weights(weight_init: dict)#
Method that handles the linear parameters' initialization.
- Parameters:
weight_init (dict) -- Initialization specifications' dictionary.
- training: bool#
Fully Connected Readout block class#
- class src.model.SpikingBlock.ReadoutFCBlock(input_dim: int, output_dim: int, nb_steps: int, truncated_bptt_ratio: int, spike_fn: SuperSpike | SigmoidDerivative | PiecewiseLinear | ATan, neuron_model: str, neuron_parameters: dict, weight_init: dict, scale_flag: bool, scale_factor: float, device, dtype: dtype, layer_index: int)#
Bases:
Module
Class that implements the SNN readout linear block.
- forward(x: Tensor)#
Method that defines the performed computation during the forward pass.
Note
Note that this method override the super class method.
- Parameters:
x (torch.Tensor) -- A tensor of input data.
- init_neuron_parameters(neuron_parameters: dict)#
Method that handles the readout neurons parameters' initialization.
- Parameters:
neuron_parameters (dict) -- Initialization specifications' dictionary.
- init_weights(weight_init: dict)#
Method that handles the linear parameters' initialization.
- Parameters:
weight_init (dict) -- Initialization specifications' dictionary.
- training: bool#